python
二二阶导数求法?
一、二二阶导数求法?
二阶导数,是原函数导数的导数,将原函数进行二次求导。例如
y=f(x),
则一阶导数y’=dy/dx=df(x)/dx
二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d²y/dx²=d²f(x)/dx²。
x'=1/y'
x"=(-y"*x')/(y')^2=-y"/(y')^3
扩展资料:
几何意义
切线斜率变化的速度,表示的是一阶导数的变化率
二、二阶导数和二阶偏导数区别?
一、定义不同
导数,是对含有一个自变量的函数进行求导。
偏导数,是对含有两个自变量的函数中的一个自变量求导。
二、几何意义不同
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
三、求法不同
导数
1、直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2、高阶导数的运算法则:
3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
三、二阶导数跟导数区别?
一、相关性不同
1、二阶导数连续:二阶导数连续则二阶导数必定存在。
2、二阶导数存在:二阶导数存在二阶导数不一定连续。
二、几何含义不同
1、二阶导数连续:二阶导数连续函数图形是连续的曲线。
2、二阶导数存在:二阶导数存在函数图形不一定是连续的。
扩展资料
二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;若在(a,b)内f(x)<0,则f(x)在[a,b]上的图形是凸的。
四、tan二阶导数?
二阶导数就是对一个函数进行二次求导,tanx进行第一次求导的是sec^2x,再一次求导是对sec^2x求导,而sec x=1/cosx所以设f(x)=1/cos^2x=( cos x)^(-2)。
求导的f(x)=-2·(1/cos ^3 x)·( - sinx)=2sinx/(cos ^3 x)。 求导有关键,因为有的里面是函数包函数,所以要一个大部分函数作整体,再对里面的函数求导。
tanx的求导推导:首先将tanx变形为分式,tanx=sinx/cosx。然后对分式进行求导,利用分式的求导性质。最后得sinx/cosx的导数等于1
/cosx的平方。所以tanx的导数就是secx的平方。
五、二阶导数顺序?
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
六、二阶导数写法?
二阶导数的写法:函数f(x)的二阶导数写作f''(x)。
七、二阶导数公式?
二阶导数,是原函数导数的导数,将原函数进行二次求导。例如
y=f(x),
则一阶导数y’=dy/dx=df(x)/dx
二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d²y/dx²=d²f(x)/dx²。
x'=1/y'
x"=(-y"*x')/(y')^2=-y"/(y')^3
扩展资料:
几何意义
切线斜率变化的速度,表示的是一阶导数的变化率。
函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。
这里以物理学中的瞬时加速度为例:
根据定义有
可如果加速度并不是恒定的,某点的加速度表达式就为:
a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数)
又因为v=dx/dt 所以就有:
a=dv/dt=d²x/dt² 即元位移对时间的二阶导数
将这种思想应用到函数中 即是数学所谓的二阶导数
f'(x)=dy/dx (f(x)的一阶导数)
f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)
八、二阶导数解法?
二阶导数,是原函数导数的导数,将原函数进行二次求导。解法例如
y=f(x),
则一阶导数y’=dy/dx=df(x)/dx
二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d²y/dx²=d²f(x)/dx²。
x'=1/y'
x"=(-y"*x')/(y')^2=-y"/(y')^3
二阶导数,是原函数导数的导数,将原函数进行二次求导。例如
y=f(x),
则一阶导数y’=dy/dx=df(x)/dx
二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d²y/dx²=d²f(x)/dx²。
x'=1/y'
x"=(-y"*x')/(y')^2=-y"/(y')^3
九、二阶导数通解?
对二阶导数先求一次不定积分,得出原函数可能的一阶导数,再对一阶导数再求一次不定积分即可得出原函数。
例如二阶导数为ax+b,先对该二阶导数求一次不定积分得出其一阶导数为ax^2+bx+c,再对一阶导数求一次不定积分得出其原函数为ax^3+bx^2+cx+d,其中c、d为任意实数。对原函数求二阶导数进行验证可以知道这一结果是正确的。在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
十、二阶导数判定?
二阶导数时一阶导数的导数,因此二阶导数可以判断出一阶导数的单调性,进而求出最值(高考题目中很少出现高于二阶导数的形式),我们通过一阶导数的最值来判断一阶导数的符号,注意这里一阶导数的最值只能是判断是否恒为非负或恒为非正,若求得的一阶导数最小值小于零或最大值大于零,则无意义,进而通过一阶导数的非负或非正求得原函数的单调性和最值,因此过程中最重要的还是一阶导数,用到的二阶导数其实相当于两次简单的一阶导数判断单调性。
热点信息
-
在Python中,要查看函数的用法,可以使用以下方法: 1. 使用内置函数help():在Python交互式环境中,可以直接输入help(函数名)来获取函数的帮助文档。例如,...
-
一、java 连接数据库 在当今信息时代,Java 是一种广泛应用的编程语言,尤其在与数据库进行交互的过程中发挥着重要作用。无论是在企业级应用开发还是...
-
一、idea连接mysql数据库 php connect_error) { die("连接失败: " . $conn->connect_error);}echo "成功连接到MySQL数据库!";// 关闭连接$conn->close();?> 二、idea连接mysql数据库连...
-
要在Python中安装modbus-tk库,您可以按照以下步骤进行操作: 1. 确保您已经安装了Python解释器。您可以从Python官方网站(https://www.python.org)下载和安装最新版本...